
Cell Host & Microbe

Resource
The Treatment-Naive Microbiome
in New-Onset Crohn’s Disease
Dirk Gevers,1 Subra Kugathasan,4,24 Lee A. Denson,5,24 Yoshiki Vázquez-Baeza,6 Will Van Treuren,7 Boyu Ren,8

Emma Schwager,8 Dan Knights,9,10 Se Jin Song,7 Moran Yassour,1 Xochitl C. Morgan,8 Aleksandar D. Kostic,1
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SUMMARY

Inflammatory bowel diseases (IBDs), including
Crohn’s disease (CD), are genetically linked to host
pathways that implicate an underlying role for aber-
rant immune responses to intestinal microbiota.
However, patterns of gut microbiome dysbiosis in
IBD patients are inconsistent among published
studies. Using samples from multiple gastrointes-
tinal locations collected prior to treatment in new-
onset cases, we studied the microbiome in the
largest pediatric CD cohort to date. An axis defined
by an increased abundance in bacteria which
include Enterobacteriaceae, Pasteurellacaea, Veillo-
nellaceae, and Fusobacteriaceae, and decreased
abundance in Erysipelotrichales, Bacteroidales, and
Clostridiales, correlates strongly with disease status.
Microbiome comparison between CD patients with
and without antibiotic exposure indicates that anti-
382 Cell Host & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevie
biotic use amplifies the microbial dysbiosis associ-
ated with CD. Comparing the microbial signatures
between the ileum, the rectum, and fecal samples
indicates that at this early stage of disease, assess-
ing the rectal mucosal-associated microbiome offers
unique potential for convenient and early diagnosis
of CD.

INTRODUCTION

Inflammatory bowel disease (IBD) is a complex disease in which

genetic and environmental circuits establish and contribute to

disease pathogenesis. Recent large-scale genome-wide asso-

ciation studies link IBD to host-microbe pathways central to

sensing/signaling andmucosal-initiated effector responses (Jos-

tins et al., 2012). Studies of the intestinal gut microbiota imply

that an unbalanced microbial community composition is asso-

ciated with a dysregulated immune response (Khor et al., 2011).

The microbiome thus likely plays a role in the pathogenesis of
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IBD (Manichanh et al., 2012), but this role remains poorly under-

stood. Previous studies characterized patients with established

disease, but the use of small cohorts resulted in a lack of statis-

tical power to accommodate diverse clinical covariates (Kaa-

koush et al., 2012), and results of these studies were likely

affected by the application of treatments (Morgan et al., 2012).

The existing new-onset studies that examine the fecal micro-

biome (Papa et al., 2012) detected a disease signal; however,

because fecal bacterial ecosystems differ from those in the in-

testinal mucosa (Momozawa et al., 2011), studies of strictly fecal

communities may face limitations in identifying microbes more

directly involved in disease initiation or progression.

To improve our understanding of how the microbiota con-

tributes to the inflammatory cascade of Crohn’s disease (CD)

pathogenesis, we performed a study that addresses several

important limitations of previous work. We applied a standard-

ized approach to a large, multicenter cohort of new-onset CD,

collecting samples before treatment initiation, and including

subjects representing the variety of disease phenotypes with

respect to location, severity, and behavior. Here we report on

668 patients that include those with CD and non-IBD controls

(see Table S1A available online), representing the largest single

cohort microbiome study related to new-onset IBD to date as

well as representing the largest characterization of mucosal-

associated microbiota in non-IBD subjects. We used a combina-

tion of next-generation sequencing to deeply characterize the

disease-associated microbiota, and a well-established multi-

variate analysis method to account for a wide range of demo-

graphic and clinical covariates (e.g., age, gender, race, disease

severity, behavior, and location) (Morgan et al., 2012). The

strength of this study lies in the sampling prior to treatment,

the size of the cohort, and the concurrent sampling of different

sites, including multiple mucosal tissue sites, and the luminal

content as stool samples. Finally, we combined two additional

cohortswith the RISK cohort, resulting in a total of 1,742 samples

from pediatric or adult patients, with either new-onset or estab-

lished disease, for which tissue biopsies and/or fecal samples

were processed through a uniform sequencing and analysis

approach. Thismulticohort study allows us to position the unique

RISK cohort in the context of a comprehensively defined diver-

sity landscape of IBD, and to identify robust and generally appli-

cable biomarkers.

RESULTS

A Unique Treatment-Naive Inception Cohort for
Pediatric CD
We studied the mucosal- and lumen-associated microbiota in a

large, well-characterized inception cohort for CD in children. We

included subjects from 3 to 17 years of age with a well-estab-

lished diagnosis of CD (n = 447), and control subjects (n = 221)

with noninflammatory conditions—for example, presenting with

abdominal pain and diarrhea (Table S1A). Mucosal tissue

biopsies (terminal ileum and rectum) and serum samples were

collected as part of the diagnostic colonoscopic examination

prior to the initiation of treatment. A subset of the enrolled

patients (n = 233) also provided a fecal sample prior to treatment

start. The diagnosis and disease categorization was confirmed

after a minimum of 6 months’ follow-up, and was based on a
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combination of endoscopic, histological, and radiological in-

vestigations. A total of 1,321 samples, including 630 ileal and

387 rectal tissue biopsies and 304 stool samples, were submit-

ted for microbiome profiling using 16S rRNA gene sequencing

on the Illumina MiSeq platform (version 2) with 175 bp paired-

end reads. After quality filtering and assembling overlapping

paired-end reads, more than 45.5 million sequences were re-

tained (mean of 29,915 sequences per sample), providing the

most in-depth characterization of treatment-naive CD-associ-

ated communities to date.

TheKeyPlayers of theMicrobial Dysbiosis in New-Onset
Pediatric CD
An unweighted UniFrac-based comparison of the mucosal-

associated microbiota from patients with new-onset CD and

controls indicated that the overall diversity in microbial composi-

tion was mainly differentiated by sample type and microbial

diversity, but disease phenotype was not strong enough to

differentiate patients (Figure 1A). Instead, complex microbial

communities from samples with multiple clinical covariates are

best explored by multivariate association tests at the level of

specific microbial community members. We identified microbial

organisms that reached statistically significant association with

subjects’ disease phenotype using the MaAsLin pipeline, which

identifies significant associations of the microbiota with multiple,

potentially confounded sample variables (see Experimental Pro-

cedures). This has the benefit of testing for disease characteris-

tics while controlling for several known or potential confounding

variables, such as past antibiotic use, age, gender, and race.

Correction for other factors that typically have a significant

impact on the microbial composition, including treatment and

disease duration, was not necessary, because all samples

were collected prior to treatment and at standard intestinal sites

regardless of the segments involved in the disease.

Biomarker detection analysis of mucosal-associated micro-

biome showed that inflammatory conditions were most strongly

associated with an overall drop in species richness and an alter-

ation in the abundance of several taxa (Figure 1B; Table S2,

panel A). Several of these taxa have been reported in previous

studies (Papa et al., 2012; Morgan et al., 2012), including Enter-

obacteriaceae, Bacteroidales, and Clostridiales. However, we

were able to identify additional taxa as significant biomarkers

for disease. Most noticeably, we detected positive correlations

between CD and abundances of Pasteurellaceae (Haemophilus

sp.), Veillonellaceae, Neisseriaceae, and Fusobacteriaceae.

Fusobacterium has previously been suggested as a biomarker

for IBD (Strauss et al., 2011) and was also recently shown to

promote a beneficial microenvironment for the progression of

colorectal carcinoma (Kostic et al., 2012), a long-term complica-

tion of IBD. Subsampling the data set to either smaller sample

sizes or lower sequencing depths indicated that sample size

contributes more substantially to the increased statistical power,

highlighting the importance of sampling a large cohort. Lowering

the number of sequences to 300 reads/sample (�1%of the data)

did not affect our ability to detect these taxa (data not shown),

but reducing to half of the samples or lower did begin to affect

the recovery of some taxa (Figure S1A). Interestingly, few of

these taxa were present at a higher abundance in patients under

the age of 10, and were thus negatively correlated with age,
st & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevier Inc. 383



Figure 1. Most Differential Taxa in

Pediatric CD

(A) A set of principal coordinate plots of the un-

weighted UniFrac distance, with each sample

colored either by the disease phenotype (left),

alpha diversity (middle), or sample type (right).

PC1, PC2, and PC3 represent the top three prin-

cipal coordinates that captured most of the di-

versity, with the fraction of diversity captured by

that coordinate shown in percent.

(B) Differences in abundance are shown for the

taxonomic biomarkers that were detected using a

multivariate statistical approach (see Experimental

Procedures and Table S2). The fold change for

each taxon was calculated by dividing the mean

abundance in the cases by that of the controls.

Several taxonomic biomarkers measured at both

the ileal and the rectal sites were found to be

significantly correlated with disease phenotype;

however, most of that microbial signal was lost in

the stool samples. The fraction of patients that

were on antibiotics during sample collection was

considered as an individual subtype, due to the

large confounding impact antibiotic exposure

causes on the microbial composition (see Table

S2). The left shows cases without antibiotic treat-

ment, and the right includes the fraction of cases

(10%) that were under antibiotic pressure at

sampling. The taxa at the top are increased in

disease state, whereas the taxa at the bottom

follow an opposite trend. Apparent missing bars

are cases in which there is no difference, or fold

change equals 1. Use of antibiotics does impact

the microbial composition by tipping the microbial

community further toward a dysbiotic state, and

has a differential impact on the taxa, depending on

organism and sampling site. Related to Figure S1

and Table S1.
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including Pasteurellaceae and Neisseriaceae (Table S2, panel A;

Figure S1B).

An increased level of Bacteroides and Clostridiales was

maintained in non-CD patients relative to those with CD (Table

S2, panel A). Specific negative associations with CD were de-

tected for several genera, including Bacteroides, Faecalibacte-

rium, Roseburia, Blautia, Ruminococcus, Coprococcus, and a

number of taxa within the families of Ruminococcaceae and

Lachnospiraceae. A well-described anti-inflammatory organism

that is considered to be a sensor and marker of health is

Faecalibacterium prausnitzii (Sokol et al., 2008). Reduced ileal

abundance of F. prausnitzii has been associated with a higher

rate of endoscopic recurrence of inflammation 6 months after

ileo-cecal resection.

New-Onset Mucosal-Associated Dysbiosis Is Only
Weakly Reflected in Stool
The imbalance in the microbial community network was only

observed in the microbiome profiles obtained from tissue

samples, and was not seen in the stool samples collected at

the time of the diagnosis (Figure 1B). This was confirmed by per-

forming separate biomarker detection on the stool samples of

CD patients and controls with noninflammatory conditions, re-

sulting in only a short list of taxa significantly associated with dis-

ease. This included a gain in Streptococcus and a loss in a few
384 Cell Host & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevie
taxa belonging to the order of Clostridiales, including Dorea,

Blautia, and Ruminococcus (Table S2, panel B). With a mean

abundance far below 0.1%, all of these taxa were minimally

contributing to the overall shift. Consequently, we further inves-

tigated the precise differences between the mucosal tissue and

stool samples within patients with new-onset CD (Figure S1C;

Table S2, panel C). Of the four above-mentioned taxonomic

groups that were decreased in CD, all except Bacteroidales

were found to be significantly increased in stool samples, along

with Lactobacillus, Enterococcus, and Streptococcus. In addi-

tion, the levels of Fusobacteriaceae and Neisseriaceae were

reduced, but no significant differences were noted for any of

the other organisms typically associated with inflammatory

conditions. Based on these observations, we can infer that the

microbial balance is less shifted toward a dysbiotic state in the

lumen despite the disease, explaining the lack of a biomarker

signal and emphasizing the need to examine tissue biopsies in

addition to stool samples in order to gain a better understanding

of possible mechanisms.

Antibiotic Exposure Amplifies the Microbial Dysbiosis
Antibiotic usage has previously been linked to substantial

taxonomic changes in the gastrointestinal microbial com-

position (Dethlefsen et al., 2008; Antonopoulos et al., 2009; Man-

ichanh et al., 2010). Here, a small subset of the CD patients
r Inc.
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(n = 57/447, 13%) was on antibiotics during sample collection,

allowing a comparison between the microbiome in CD patients

with and without antibiotic exposure. Although a weak effect

on disease severity (PCDAI) and overall species diversity be-

tween the patient groups with and without antibiotics was found

(p = 0.043 and 0.02, respectively; Student’s t test), we observed

a strong effect on the microbial composition, and exposure to

antibiotics generally amplified the dysbiosis. A more extreme

impact was seen on the abundance levels of the phyla increased

in noninflammatory conditions, including Bacteroides, Clostri-

diales, and Erysipelotrichaceae, which was most pronounced

in rectal biopsy and stool samples, with a differential effect de-

pending on taxa and sample type, e.g., a 10-fold increase in

Fusobacteriaceae in the ileum and Enterobacteriaceae in the

rectum (Figure 1B). The Pasteurellaceae were suppressed in

the ileum, whereas the Veillonellaceae were decreased in the

rectum and stool. We note that excluding samples from subjects

with antibiotics exposure during sampling does not change the

key players of the dysbiotic state outlined above (Table S2, panel

2A0). These results do not provide any causative explanation but

are relevant in the context of previously described associations

between higher antibiotic exposure and the diagnosis of CD

(Hviid et al., 2011). We hypothesize that the use of antibiotics

has the potential to impact the overall community structure

and increase the potential for exposure to dysbiosis.

The Functional Dysbiosis at the Mucosal Tissue Sites
Reflects that of Established Disease
Shotgun sequencing for metagenomics would provide the

greatest precision of microbial community assays and direct

evidence of microbial function. However, nucleotide extracts of

mucosal tissue samples consist of extremely high fractions

(>99%) of host-derived nucleotides. In the absence of methods

to efficiently dissociate the microbial from the host fraction, no

cost-effective shotgun sequencing of the microbial communities

can be performed. Therefore, we predicted the functional

composition of these mucosal-associated microbiota using

PICRUSt (Morgan et al., 2012) (Table S2, panel D). This algorithm

estimates the functional potential of microbial communities

given a marker gene survey and the set of currently sequenced

reference genomes with an accuracy of 80%–90% on human

gut communities. The functional changes in the samples of

new-onset CD patients included a loss in basic biosynthesis

(related to reductions in Bacteroides and Clostridia) and a

switch toward pathobiont-like auxotrophy (increase in aerobic

or aerotolerant taxa, i.e., Proteobacteria and Pasteurellaceae).

Further, biomethanation was replaced by acetogenesis in order

to reduce accumulated hydrogen. An increased disease severity

further amplified the disease signal of oxidative stress and

auxotrophy. Interestingly, components of the benzoate meta-

bolic pathway were associated with disease (aminobenzoate

degradation) and disease severity (fluorobenzoate degradation).

Intermediaries of benzoate metabolism are known to influence

microbial dysbiosis as a stress response (Eloe-Fadrosh and

Rasko, 2013) and have the ability to promote Enterobacteria-

ceae growth and virulence (Freestone et al., 2007). Antibiotic

exposure had several overlapping effects on the functional

composition of the gut microbiota and took up one-third of all

significant associations, including a unique series of pathways
Cell Ho
related to xenobiotic metabolism (degradation of aminoben-

zoate, styrene, chloroalkene, toluene, benzoate, etc.).

Describing Disease Status with the Microbial Dysbiosis
Index
We inferred a taxon-taxon interaction network for the ileal sam-

ples (see Experimental Procedures) and found relationships

among disease-associated organisms mentioned above (Fig-

ure 2A; Table S2, panel E). Out of all significant interactions

found, 52% supported a co-occurrence within the two groups

of taxa that behave similarly with respect to disease (i.e., increase

or decrease in CD, respectively), and 30% supported a strong

co-exclusion between these two groups. Importantly, the taxa

within the families Enterobacteriaceae, Fusobacteriaceae, Pas-

teurellaceae, and Veillonellaceae were often found together, as

well as different taxa within the Clostridia or Clostridia and Bac-

teroidetes teaming up with one another. These observations

led us to calculate the log of [total abundance in organisms

increased in CD] over [total abundance of organisms decreased

in CD] for all samples, hereafter referred to as the Microbial

Dysbiosis index (MD-index). This MD-index, derived on disease

phenotype, showed a strong positive correlation with clinical dis-

ease severity (PCDAI) (Figure 2B) and negative correlation with

species richness (Figure 2C), demonstrating that a severe dis-

ease statemanifests a strongly reduced species diversity in favor

of amore extremedysbiosis. Further, this indexwas a straightfor-

ward feature capturing the overall beta-diversity, resulting in a

clear gradient by which samples group across all sample types

(Figure 2D). This gradient reflects shifts in both groups of organ-

isms, those increased and decreased with disease (Figure S2B).

Lastly, the MD-index was also significantly higher in those pa-

tients positive for two or more microbial or cytokine serological

markers (p < 0.0001, Student’s t test). Since serologic markers

are increasingly being used to help differentiate IBD disease

phenotypes, such an association might indicate a potential link

between the gut microbial biomarkers and the presence of these

serologic biomarkers. However, with the data collected for this

cohort, no specific correlations were found.

CD is characterized by inflammation spanning multiple tissue

layers, with deep ulcer formation linked with worse long-term

disease outcomes. The RISK cohort measured deep ulceration

during the diagnostic colonoscopy, presenting us with the op-

portunity to examine a link between the gut microbiota and

mucosal ulceration. The recorded prevalence of any deep ulcers

(ileum or colon) with CD patients amounted to 42% (Table S1A).

In those patients, we observed increased levels of Pasteurella-

caea and Veillonellaceae (p < 0.01, FDR corrected p < 0.15)

and Rothia mucilaginosa (p = 0.0004, FDR corrected p = 0.02).

In addition, an association with the KEGG pathway for patho-

genic Escherichia coli infection was positively associated with

ulcer formation (Table S2, panel D). Further experimental study

will be needed to determine whether any of these organisms

are causally involved in ulceration in IBD patients, or merely

adapted to live in this affected environment.

Shotgun Metagenome-Based Identification of Microbial
Biomarkers
Most published studies of the microbiome in IBD so far have

used a 16S rRNA gene-based approach and are thereby limited
st & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevier Inc. 385



Figure 2. The Microbial Dysbiosis Index Characterizes CD Severity

(A) A correlation network was inferred for the ileal microbiota compositions using CCREPEwith a checkerboard score, indicating a strong co-occurrence between

taxa of the same disease-associated behavior and a co-exclusion between taxa of a different behavior. Nodes represent the different taxa, and color corresponds

to their behavior in disease, with green for those decreased in CD and red for those increased in CD. Edges between nodes represent correlations between the

nodes they connect, with edge colors of dark and light gray indicating positive and negative correlations, respectively. For clarity, only edges corresponding to

correlations whose similarity was less than 0.3 are shown.

(B) Scatterplot of the arcsine square root transformed abundances of all summed abundances for the taxa increased (top) or decreased (bottom) in CD, versus the

pediatric CD activity index (PCDAI [Hyams et al., 1991]) as a measure for disease severity.

(C) Scatter density plot of the species richness (Chao1 [Chao et al., 2006]) versus the Microbial Dysbiosis index (MD-index) for each sample. The increase in blue

color (white to dark blue) reflects the density of the scatterplot. The MD-index is defined as the log of [total abundance in organisms increased in CD] over [total

abundance of organisms decreased in CD] (organisms listed in Figure 1A) and is intended as an overall summary statistic for the microbial dysbiosis described in

more detail in (A). In samples with a high MD-index (>1), a strong reduction in the species richness was observed.

(D) A principal coordinate plot of the unweighted UniFrac distance, colored by the MD-index. Sqrt, square root.

Related to Figure S2 and Table S2.
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in characterizing the microbiota to a resolution at the family/

genus level. To study the microbiota at a higher resolution, a

subset of 43 stool samples (10 controls and 33 subjects) were

shotgun sequenced for metagenomics using the Illumina

HiSeq2000 platform (mean 13.3 gigabases [Gb] and SD 2.5 Gb

per sample, paired-end reads, fragment insert size 180 bp).

Metagenomic data were filtered for human and low-quality

reads, and further analyzed as described in Experimental Proce-

dures. As indicated above, the stool samples of patients do not

reflect the dysbiosis in a similar way as the mucosal tissue sam-

ples, a finding that we confirmed at both the taxonomic and the

functional levels with these data (data not shown). Nevertheless,

mucosal-associated organisms were not restricted to any

particular intestinal location, and were readily observed in all

sample types, although at lower abundances. Therefore, by

adding metagenomics data on the subset of stool samples, we

were able to profile the composition of microbial communities

at a finer taxonomic resolution (Table S2, panel F). The dominant

species increased in CD were Escherichia coli, Fusobacterium

nucleatum, Haemophilus parainfluenzae (Pasteurellaceae),

Veillonella parvula, Eikenella corrodens (Neisseriaceae), and
386 Cell Host & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevie
Gemella moribillum. The dominant species decreased in CD

were Bacteroides vulgatus, Bacteroides caccae, Bifidobacte-

rium bifidum, Bifidobacterium longum, Bifidobacterium adoles-

centis,Bifidobacterium dentum,Blautia hansenii,Ruminococcus

gnavus, Clostridium nexile, Faecalibacterium prausnitzii, Rumi-

noccus torques, Clostridium bolteae, Eubacterium rectale,

Roseburia intestinalis, and Coprococcus comes.

This detailed information and availability of genomic data

will be useful in further functional characterization of these

organisms and their roles in disease pathogenesis. In a first

exploration, we performed a comparison between representa-

tive reference genomes for each of these species, generating a

view of the differential KEGG pathways (Figure 3). The species

increased in CD uniquely contributed pathway components of

glycerophospholipid and lipopolysaccharide metabolism, found

to instigate inflammation (Morita et al., 1999), and phosphonoa-

cetate hydrolase, providing access to a novel carbon and phos-

phate source not accessible to most other organisms (Kim et al.,

2011). Interestingly, the latter is a zinc-dependent enzyme that

might contribute to a mineral deficiency common in newly diag-

nosed IBD patients. The pathway components unique to the
r Inc.



Figure 3. Comparative Genomics of CD Biomarkers

The KEGG metabolic pathways that differentiate the species by behavior in disease state are shown as a heatmap. A selection of reference genomes that are

representative for the species increased or decreased with disease were obtained from IMG (JGI), and biomarker detection was performed on their gene content

at the level of KEGG pathways. Several were statistically significant (Wilcoxon, p < 10e-8) and are visualized here. Related to Table S2.
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species decreased in CD contribute to the bile acid and amino

acid biosynthesis pathways, including connections between

amino acid metabolism and energy, carbohydrate, or nucleotide

metabolism. Collectively, these provide access to complex

carbohydrates, and the break at the alpha-ketoglutarate step

of the TCA cycle is indicative of a true anaerobic lifestyle, as

indicated previously (Morgan et al., 2012).

Biopsy-Associated Microbiome Can Diagnose CD
Several recent studies have explored the potential for identifying

disease states based on the host-associated microbial com-

position, including skin swabs for psoriasis (Statnikov et al.,

2013), and fecal samples for obesity (Le Chatelier et al., 2013),

autism (Hsiao et al., 2013), or IBD (Papa et al., 2012). Here, we

evaluated how the microbiome composition in three different

sample types performed for classifying subjects by CD state

using a receiver-operating characteristic (ROC) analysis. We

included a total of 425 tissue biopsies of the ileum, 300 of the

rectum, and 199 stool samples in three independent analyses

(Figures 4A–4C). Microbiome profiles were collapsed to the

genus-level abundances and normalized (see Experimental Pro-

cedures). The best performance was obtained by the ileal sam-

ples (AUC = 0.85), closely followed by the rectal biopsies

(AUC = 0.78), both with a narrow confidence interval. The stool

samples, however, performed less well (AUC = 0.66) and had
Cell Ho
also a low consistency (broader confidence interval). A previous

study was able to get a higher performance with stool samples

for disease classification in an IBD cohort (Papa et al., 2012),

but their patient cohort distinguishes itself from RISK by the

fact that subjects had a mean disease duration of 34.8 months,

whereas the RISK cohort is entirely new-onset, with samples

only taken at the time of diagnosis. This finding is consistent

with the biomarker detection analysis that indicated that several

taxonomic groups were increased or decreased between cases

and controls when comparing mucosal-associated microbiome

profiles, but not in stool samples (Figure 1). Interestingly, classi-

fication of subjects by disease state was not affected by disease

location. In this cohort, 22% had disease confined to the ileum

and 25% to the colon, and 53% had ileocolonic disease. Sam-

ples from both tissue biopsy locations could classify subjects,

even if disease was confined to the other location. In fact, micro-

biome composition between the different biopsy sites was found

to be far less different than between tissue and stool, for all three

disease subphenotypes (Figure 4D).

Further, this cohort presented the opportunity to derive a

predictive model for future disease outcome, as patients with a

positive diagnosis for CD were re-examined at a 6- and

12-month follow-up, at which point the disease activity index

(PCDAI) was determined. For all patients with such follow-up

data available (n = 305), 7.5% had an increased disease severity
st & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevier Inc. 387



Figure 4. Disease Classification Performs Well on Biopsy-Associated Microbiome Profiles

(A–C) For each of the three sample types, including terminal ileum biopsy (A), rectum biopsy (B), and stool sample (C), we evaluated the accuracy of disease

classification using L1 penalized logistic regression with ROC curves representing the results. Dashed lines show the mean performance obtained when genus-

level features were used, and the surrounding gray area is the 95% confidence interval. Terminal ileum biopsies performed best (AUC = 0.85), closely matched by

the rectum biopsies (AUC = 0.78). However, the classifier based on the stool samples collected at the time of the diagnosis performs less well (AUC = 0.66), and

with low consistency (large confidence interval).

(D) The intrasubject diversity in microbiome composition was determined for all pairwise sample type combinations. Both biopsy samples were found to be highly

similar, whereas the stool sample was quite diverse. Further, we also compared whether disease location would impact the intrasubject diversity between the

two tissue biopsy locations. The location of the disease, ileal (L1), colonic (L2), or ileocolonic (L3), did not significantly disrupt the similarity between the two in-

trasubjectmucosal-associatedmicrobiota. Also, no biomarkerwasdetected thatwould allowus to distinguish thesedisease subphenotypes. Related to Figure S3.
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6 months after diagnosis, and for 22% the severity reduced from

severe (PCDAI > 30) to remission (PCDAI < 10). No tissue

samples were collected at later time points, and thus no

follow-upmucosal microbiome profiles exist. However, we could

evaluate a model for predicting whether a patient will develop an

exacerbated or reduced disease severity over the next 6months,

using the microbiome and clinical covariates collected at the

time of onset of disease. Using a random forests classifier

trained on 90% of the data, we found we were able to predict

high 6-month PCDAI (R10) in the remaining 10% of the data

with 67.0% accuracy, a 14% improvement over the predictive

accuracy of a model trained only on clinical covariates

(52.9% ± 0.4%) (Figure S3A). Although the absolute level of

accuracy is modest, the performance gain driven by the micro-

biome is a direct and unbiased demonstration of the utility of

microbiome features for predicting clinical outcomes. To deter-
388 Cell Host & Microbe 15, 382–392, March 12, 2014 ª2014 Elsevie
mine how influential a given feature was in building the predictive

model, we tested the decrease in accuracy of the model when

that feature was removed. The most influential features for

predicting future PCDAI according to this test were age of

onset, PCDAI at diagnosis, and levels of disease-associated

organisms, including Enterobacteriaceae, Fusobacterium, and

Haemophilus. Age of onset and levels of Enterobacteriaceae

were negatively correlated with future PCDAI, and PCDAI at

diagnosis and levels of Fusobacterium and Haemophilus were

positively correlated with future PCDAI (Figure S3B).

Comparing Pediatric CD with Other Adult-Established
Disease Cohorts
To position the above findings in the context of other IBD

microbiome studies, we resequenced samples from a previously

published study (Morgan et al., 2012) and included samples from
r Inc.



Figure 5. A View of the Microbial Composi-

tion across Different IBD Cohorts

Wecombinedmicrobial profiles obtained for 1,742

subjects from three different IBD cohorts and

generated a set of principal coordinate plots of the

unweighted UniFrac distance, where each sample

was colored by (A) cohort, (B) disease type, (C)

MD-index, or (D) species richness (Chao1). From

this combined view, it is clear that the first principal

coordinate (PC1) stratifies the samples by species

richness, which is negatively correlated with

MD-index, and that the second principal coordi-

nate (PC2) is largely affected by cohort. Disease

phenotype is no obvious driver for sample clus-

tering.
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several other cohorts, using the same sequencing approach.

Combining all of these samples resulted in data from more

than 1,500 subjects, of whom 46% had CD, 31% had ulcerative

colitis (UC), and 19% were non-IBD controls, and included both

tissue biopsies (88%) and stool samples (12%) (Table S1B). Two

important differences between the RISK cohort participants and

the other cohorts were (1) the lower age range (13 years, SD 3,

versus 41 years, SD 15) and (2) the fact that RISK exclusively

enrolled patients with new-onset disease, whereas the mean

disease duration at time of sampling in the other cohorts was 7

years since diagnosis (SD 11, range 0–62). The combined data

set consisted of nearly 60 million paired-end 16S reads, with a

mean of 23,620 filtered sequences per sample.

To our knowledge, this is the largest uniformly generated

microbiome data set for CD specifically, but also IBD in general,

revealing an extensive landscape of microbial diversity across a

wide range of subjects and disease phenotypes. We therefore

took the opportunity to examine the effect size of disease pheno-

type on the microbiome composition relative to the effects intro-

duced by cohort, age, gender, treatment, and biopsy location.

We surveyed effects on the biodiversity as a whole, and on the

organisms contributing to the dysbiosis specifically, and used

a linear mixed-effects model including cohort and subject as

random factors (see Experimental Procedures). The results

revealed that interindividual variation, cohort, and sample type

had significant effects on the overall microbial community

composition, and that variation introduced by disease pheno-
Cell Host & Microbe 15, 382–39
type and treatment was hidden under-

neath those primary factors (Table S2,

panel G). However, within specific sample

types (e.g., terminal ileum), disease can

explain up to 10% of the variation seen

in subsets of key dysbiotic taxa, in which

the effects of having CD versus control do

surface. The earlier described impact of

antibiotics on the microbial community

network was one of the stronger signals

across all cohorts, and found in almost

all included sample types. Interestingly,

the signal was stronger in the mucosal-

associated microbiome profiles than

in the stool samples (Figure S2A). In

contrast, the impact of antibiotics on
overall microbial diversity was stronger in stool than in mucosal

samples, again indicating that conclusions may differ based on

which sample types are studied. Taken together, this advocates

for a need to standardize sample collection, include diverse sam-

ple types to represent different gastrointestinal compartments,

and account for treatment effect in order to get the most statisti-

cal power to study the role of the microbiome in diseases.

Lastly, we aimed to determine the effect on individual taxa

using a biomarker detection approach and compare the results

across the different cohorts and disease phenotypes. Most of

the organisms that were found to be increased in CD were also

found to be significantly correlated with UC, but those taxa

that were negatively associated with CD were not found to be

significant in association with UC (Table S2, panel H). When

using a weighted UniFrac distance calculation and a PCoA visu-

alization (Figure 5), the clustering by overall microbial community

composition was strongly affected by cohort (Figure 5B), and

different disease subgroups significantly overlapped (Figure 5A).

However, the MD-index (Figure 5C) and species richness (Fig-

ure 5D) still explained the first principal coordinate even when

the different cohorts were combined and demonstrate that the

specific disease-associated taxa were consistent.

DISCUSSION

Our results on the microbiome at the onset of CD have identified

the key constituents of the complex gut microbial community
2, March 12, 2014 ª2014 Elsevier Inc. 389
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that define a mucosal surface in homeostasis or dysbiosis. Our

work demonstrates that the creation of such a large multicenter

cohort increases the resolution and statistical power for studying

the role of the microbiome in disease. Several of the taxa we

identified were only reliably associated with disease phenotype

when using several hundreds of samples. Achieving similar

sample sizes by combining independent cohorts for a cross-

study comparison limits the study of parameters with large effect

size that surpass the bias introduced by differences in collection

and sample handling (Lozupone et al., 2013). Capturing micro-

bial shifts in their full complexity, including taxa with smaller

shifts in relative abundance comparing cases versus controls,

require these large, optimal study designs.

Several of the organisms identified in this study are known to

reside at the inflamed mucosa with the potential to exacerbate

inflammation and/or invade intestinal epithelial cells, including

strains of Escherichia (Rolhion and Darfeuille-Michaud, 2007)

and Fusobacterium (Strauss et al., 2011). Others, such as

Haemophilus and Veillonella, have recently been reported to

contribute to oral dysbiosis in IBD patients (Said et al., 2013).

Haemophilus spp., like the Enterobacteriaceae, are well adapted

to survive in oxidative stress environments and intensify oxida-

tive stress in airway infections (Harrison et al., 2012). Interest-

ingly, Veillonella spp. are closely related to the Clostridiales,

who are otherwise considered to be beneficial to the host (Furu-

sawa et al., 2013). Prior literature, however, indicates that Veillo-

nella produce lipopolysaccharides (Gupta, 2011), a gene cluster

they might have gained through horizontal gene transfer

(M. Fischbach, personal communication). Rothia mucilaginosa,

here reported at increased levels in patients with intestinal ulcer

formation, has been found to act as an opportunistic pathogen in

immunocompromised patients (Chavan et al., 2013) and has a

genomic content that is well adapted to live within the microaer-

ophilic surface of the mucus layer in cystic fibrosis lungs (Lim

et al., 2013). Most of these organisms are relatively rare in the

colon, and typically part of the normal human oral and upper

respiratory tract microbiota, but could become opportunistic

colonizers in conditions of altered mucosal changes in tissue

oxygenation and disruption of mucosal barrier function.

We observed that both the ileal and the rectal biopsy have

similar discriminatory power for classifying disease, regardless

of the disease location. This creates the opportunity to use a

minimally invasive sampling approach that avoids bowel prepa-

ration prior to the colonoscopy, and to perform dense sampling

of the mucosal-associated microbiome to monitor the response

to treatment and potentially predict changes in disease flares.

Being able to account more readily for the microbiota in larger

cohort sizes will be of value in defining disease subphenotypes

and tracking treatment effects in clinical trials, something that

is currently not annotated. Understanding the microbial commu-

nities of the small intestine remains of tremendous value.

Mucosal-associated microbes are uniquely positioned to influ-

ence the immune system (Belkaid and Naik, 2013); particularly,

the porous mucus layer in the ileum has been shown to educate

the immune system to develop tolerance toward commensals

(Shan et al., 2013).

Large-scale collection of stool samples would be an even less

invasive approach but for this cohort did not reflect the mucosal

dysbiosis, in contrast to an earlier study (Papa et al., 2012). The
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main difference between the two cohorts is that new-onset

patients were sampled at the time of diagnosis. The earlier study

included samples of patients with established disease (mean of 3

years at time of sampling) and a treatment history. We observed

that the microbial community associated with the inflamed

epithelium had an increased level of aerobic and facultative

anaerobes (e.g., Protebacteria), whereas obligate anaerobes

prevailed in the feces (e.g., Bacteroides and Clostridiales). The

microbial community in stool from patients with established

disease also consists of less anaerobes (Papa et al., 2012).

This is consistent with a recent observation that the oxygen level

in the lumen increases with intestinal inflammation to such a

level that gut microbiota start to shift toward an aerotolerant

composition in response to an oxidative stress (Mimouna et al.,

2011). In order to validate this observation, future work will

need to consistently capture samples from patients across a

wide range of disease durations.

Another factor affecting the gut microbial composition is the

use of antibiotics, as shown in a subset of the RISK cohort

patients. Previously, antibiotics have been claimed to provide

benefits for CD patients as a first-line therapy. However, we

question this practice based on our observation that the micro-

bial network appears more dysbiotic in the context of antibiotic

exposure. Loss of protective microbes has the potential of

triggering a proliferation of less beneficial taxa (Looft and Allen,

2012), exacerbating the inflammation. Similarly, changing die-

tary patterns can introduce such shifts as quickly (Wu et al.,

2011), particularly in those individuals with reduced microbial

complexity (Fang and Evans, 2013). For example, the vitamin D

pathway has importance in gut homeostasis and in signaling

between the microbiota and the host immune system, and may

thus have implications for the development, severity, and man-

agement of inflammation (Mouli and Ananthakrishnan, 2014).

The data presented here provide a unique framework for

understanding the microbial dysbiosis in new-onset CD. This

will further develop principles that are likely to govern therapeu-

tics in IBD, but they will need to be carefully thought through

(Fischbach et al., 2013). These include in particular those efforts

that aim to shift the microbiome following a path that is based on

the successful principles applied to recurrentClostridium difficile

infections, as these are unlikely to be directly applicable to the

multifactorial disease pathogenesis of IBD.

EXPERIMENTAL PROCEDURES

Study Population and Sample Collection

A total of 447 children and adolescents (<17 years) with newly diagnosed CD

and a control population composed of 221 subjects with noninflammatory

conditions of the gastrointestinal tract were enrolled to the RISK study in 28

participating pediatric gastroenterology centers in North America between

November 2008 and January 2012 (Table S1A). Biopsies were taken from

the terminal ileum and rectum using standard endoscopic forceps and placed

into a sterile cryovial with RNAlater (QIAGEN) on ice in the Endoscopy Suite.

Nucleotides were isolated from these biopsies using the QIAGEN AllPrep

Mini Kit.

16S rRNA Gene Sequencing

The 16S gene data set consists of sequences targeting the V4 variable region.

Sequencing was performed on the Illumina MiSeq platform according to

the manufacturer’s specifications, with addition of 5% PhiX, and generating

paired-end reads of 175 bp in length in each direction. The overlapping
r Inc.
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paired-end reads were stitched together (approximately 97 bp overlap) and

further processed in a data curation pipeline implemented in QIIME 1.7.0 as

pick_closed_reference_otus.py.

Shotgun Metagenomic Sequencing

Metagenomic data production and processing were performed as described

previously (HMP Consortium, 2012). In brief, library construction was per-

formed on the Illumina HiSeq 2000 platform, targeting 7 Gb of sequence per

sample with 101 bp, paired-end reads. Species abundances were calculated

withMetaPhlAn 1.7.7, following Bowtie 2-2.1.0 alignment to theMetaPhlAn 1.0

unique marker database.

Statistical Analysis

Association testing of all covariates versus all taxa was performed by re-

gressing the relative abundance of each taxon on these linear clinical co-

variates: subject, diagnosis, ulcering, ileal involvement, PCDAI, biopsy

location, age, gender, race, and antibiotic exposure, with subject as a random

variable, using the MaAsLin algorithm with default parameters (Morgan et al.,

2012).

Correlation Network

We extracted the subnetworks of microbial interactions at the terminal ileum

from subjects free of any antibiotics pressure, using CCREPE (Compositional-

ity Corrected by REnormalization and PErmutation). This is a statistical meth-

odology for covariation analysis in compositional data developed on top of

previously published work, using the NC score, a similarity measure specif-

ically designed to detect association patterns in the human microbiome and

other microbial communities (see Supplemental Information).

ROC Analysis

ROC curves were constructed to evaluate the performance of sparse logistic

regression classifier (using L1 penalization) aiming to identify the IBD status of

a subject based on his or her microbiome profile. We have checked the perfor-

mance for classifier trained by samples from three different sites (ileum,

rectum, and stool). Five ROC curves were gained per site using 5-fold cross-

validation. Amean ROC curve was then given by averaging over all five individ-

ual fold ROC curves, and an approximated 95% pointwise confidence interval

was also constructed by using normal approximation and the sample means

and variances.
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All 16S rRNA sequences have been deposited at the National Center

for Biotechnology Information as two BioProjects under ID numbers
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